
Efficient Load Balancing for the VNF Deployment
with Placement Constraints

Chaoqun You∗, Le Min Li∗
∗University of Electronic Science and Technology of China

Abstract—The Virtual Network Function (VNF) deployment
problem in Network Function Virtualization (NFV) is of broad
theoretical and practical interests. As the traffic surges in data cen-
ters, VNF deployment requires load balancing across the servers
to avoid possible congestions caused by the uneven distribution
of VNFs. In addition, VNFs always specify placement constraints,
restricting them to run only on part of the servers. Therefore,
we study the load balancing problem for VNF deployment with
placement constraints. Despite the rich bodies of recent work on
the constrained load balancing problem using the network flow
algorithms, they all suffer exponential complexities, leading to
unbearable running time in practical executions. In this paper, we
propose a new load balancing policy termed Constrained Min-max
Placement (CMMP) that schedules VNFs in a way similar to the
max-min allocation, where we try to assign the most possible VNFs
to the poorest loaded server. The online scheduler for CMMP has
a logarithmic time complexity and is simple enough to implement
in practice. Trace-driven simulations show that the online CMMP
speeds up at least two orders of magnitude of running time
comparing to other network flow algorithms.

Index Terms—load balancing, VNF deployment, placement
constraints

I. INTRODUCTION

Network Functions (NFs) are ubiquitous in today’s data
centers [1]. They are deployed to perform diverse processing
functions, such as firewalls, proxies, and Intrusion Detection
Systems (IDS), on the traffic flows passing through them. A
recently developed approach, Network Function Virtualization
(NFV), moves the traffic processing from dedicated hardware
appliances to Virtual Network Functions (VNFs) running on
general-purpose commodity servers [2]. NFV allows VNFs to
duplicate and pick service locations from multiple servers, thus
offering more flexibility to the traffic processing. Therefore,
following a fundamental problem is to map the VNFs to the
servers while achieving a specific objective, which we refer to
as the VNF deployment problem.

Load Balancing is a main concern in deploying the VNFs.
It is important because the uneven distribution of VNFs often
leads to unstable traffic processing performance and make the
NFV server prone to faults [3–5]. According to the studies
shown in [5], some software implementations using 100% CPU
with only ∼700Mbps incoming traffic suffer from more than
20% packet loss. This loss becomes more severe as the traffic
surges in data centers [6].

In addition, most VNFs specify placement constraints [3, 4,
7, 8], restricting them to run on a particular class of servers.
For example, the CUDA traffic must pass through servers with
GPUs [9], while a DNS service can only deploy on servers

with IP addresses. According to Google, over 50% of its jobs
have simple, yet strict constraints about the servers they can
run on [10].

Therefore, in this paper we study the load balancing problem
for the deployment of VNFs with placement constraints. Our
goal is to equalize the loads among the servers while satisfying
constraints. A natural approach to achieve this goal is min-max
allocation, where we try to assign the least possible VNFs to
the most loaded server [11–13]. Min-max allocation can be
easily transformed into an Integer Linear Programming (ILP)
problem. Although there has been much work on finding the
optimal solutions to the ILP problem, its solutions are offline.
That is, whenever the data center environment changes (e.g.,
a new flow arrives or a server shuts down), the ILP problem
would be recomputed and reconfigure the allocation, and the
flow that is being processed by a VNF on a server may be
paused due to the reconfiguration of VNFs. In general, data-
intensive frameworks do not support such pauses [14]. On the
other hand, although it is possible to obtain online solutions
using a network flow algorithm instead of an ILP, all the
network flow algorithms suffer expensive computational costs
with exponential time complexities [11, 13, 15], making it is
too slow to deploy VNFs in a large-scale data center.

In this paper, we propose a simple, yet effective load balanc-
ing scheme, termed Constrained Min-Max Placement (CMMP),
that takes a logarithmic time complexity O(logm) for the on-
line deployment of VNFs with placement constraints, where m
is the number of servers in the cluster. CMMP schedules VNFs
in a way similar to the max-min allocation [14], where we try
to assign the most possible VNFs to the poorest loaded server.
We use max-min allocation because, unlike min-max allocation,
max-min allocation can degenerate to the progressive filling
(PF) algorithm [16], a greedy online algorithm with a low,
logarithmic complexity. Therefore, we try to transform the min-
max allocation problem into a max-min allocation problem
to use PF for the online deployment of VNFs. However,
min-max allocation and max-min allocation are two separate
optimization problems with different objectives. Consequently,
our challenge is to find the relationship between the optimal
solutions of the two problems. To understand the relationship,
we firstly introduce theorems rigorously describing under what
conditions the min-max allocation solution is equal to the
max-min allocation solution. Based on these theorems, CMMP
successfully transforms the original min-max allocation into
a max-min allocation problem. Like other max-min allocation

978-1-5386-8088-9/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on February 22,2023 at 13:33:34 UTC from IEEE Xplore. Restrictions apply.

solutions, the general approach we take is PF [14], making the
CMMP implementations simple enough in practice. With PF,
the online CMMP scheduler greedily deploys the next VNF
to the server with the lowest current load whose placement
constraints satisfies.

To summarize, our contributions in this work are three-fold:
• We introduce three theorems in Section III-B to rigorously

describe under what conditions the optimal solution to
the min-max allocation required by the constrained load
balancing problem is equal to the optimal solution to the
max-min allocation problem.

• Based on the theorems, we propose CMMP in Sec-
tion III-C, to support the constrained load balancing
VNF deployment. We then propose the offline and online
schedulers for CMMP in Section IV, studying their time
complexities, respectively.

• Through trace-driven simulations in Section V, CMMP is
verified to efficiently balance the loads among the servers
by using only several seconds in scheduling more than
10000 VNFs, showing a runtime two orders of magnitudes
less than the other network work flow algorithms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Modeling demands: Traffic flows are often required to pass
through an ordered sequence of NFs, which is typically referred
to as a Service Function Chain (SFC). For instance, a flow may
be required to go through a firewall, then an IDS, and finally
through a proxy [7]. Moreover, different users may require
different SFCs [8]. Therefore in this paper, the input traffic
is modeled by a set of flow demands D = {d1, d2, . . . , dp},
where each flow dk ∈ D is associated with a SFC sfc(dk)
of length l(dk). A SFC sfc(dk) is an ordered VNF sequence
in F , where F = {f1, f2, . . . , fn} is the set of function types,
e.g., firewalls, IDS, etc. Let Qi denote the total number of VNFs
required by all the SFCs in D on function type fi, and each
function type fi requires an execution time of ti.

Modeling placement constraints: Consider n types of
functions and m commodity servers for VNFs to deploy on.
Let V denote the set of servers and let E represent the edge set,
where (fi, vr) ∈ E if fi ∈ F can be assigned to server vr ∈ V .
Thus, E captures the placement constraints of the network
functions. An example of such a system can be represented by
the bipartite graph G = (F ∪V, E) shown in Fig. 1, where the
dashed lines indicates that a server can be used by a particular
type of function.

1v

5f1f 2f 3f 4f

2v 3v mv

Fig. 1. Modeling placement constraints

Modeling server load: Throughout this paper, we assume
that the number of demands p is much larger than the number

of servers m in the system (i.e., p � m). This indicates that
if several VNFs are assigned to a server, then a VNF would
be executed right after another VNF finishes without waiting
for its former VNF from the same SFC to be finished. Let
xir be the number of function fi assigned to server vr. Then
the load on server vr is denoted as

∑
i∈F xirtir, which is the

total execution time of all the VNFs assigned to server r. The
heaviest load among all the servers, which is referred to as the
makespan, can be denoted as maxr∈V

∑
i∈F xirti.

B. Problem Formulation

Our goal is to balance the loads among the servers while
satisfying the placement constraints. A natural way to achieve
this goal is min-max allocation, where we try to give least
possible VNFs to the most loaded server [11, 13]. Min-max
allocation can be formalized as an optimization problem with
the objective to minimize the maximal load among the servers,
i.e., to minimize the makespan, which we show as follows,

min
{xir}

max
r∈V

∑
i∈F(r)

xirti, (1a)

s.t.
∑

i∈F(r)

xir ≤
∑

i∈F(r)

Qi, (1 ≤ r ≤ m), (1b)

∑
r∈V

xir = Qi, (1 ≤ i ≤ n), (1c)

xir ∈ ZN
+ , (1 ≤ i ≤ n, 1 ≤ r ≤ m). (1d)

where F(r) represents the set of function types that can be
placed on vr. (1a) denotes the placement constraints of the
functions, that the number of VNFs assigned to vr is less than
or equal to the total number of VNFs that can be deployed on
this server, and (1b) denotes that the total number fi allocated
to all servers is equal to Qi.

III. CONSTRAINED MIN-MAX PLACEMENT

A. Inefficiencies of the Conventional Solutions

The min-max allocation problem shown in (1) can be easily
transformed into an Integer Linear Programming (ILP) prob-
lem [17] by replacing the original objective with an auxiliary
variable M such that maxr∈V

∑
i∈F xirti ≤M . However, the

optimal solutions to the ILP problem is offline. Whenever the
system environment changes, such as a new traffic arrives or
a server shuts down, the scheduler has to recompute the ILP
problem and reconfigure the VNF deployment. A flow that is
being processed by a VNF on a server may be paused due
the reconfiguration. In general, this pause is not supported by
data-intensive frameworks in datacenters [14].

Although it is possible to find online solutions using a
network flow algorithm instead of an ILP [11, 13], these
algorithms suffer exponential complexities with respect to the
number of VNFs and the number of servers. For example,
the CANCELALL has a time complexity of O(Q1.5m logQ),
where Q is the total number of VNFs [15]. Meanwhile, the
latest network flow algorithm MEC3 has a time complexity of
O(Q2m3) [13]. Such expensive computation costs do no apply
to high rates of decision making. Therefore, for a data-intensive

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on February 22,2023 at 13:33:34 UTC from IEEE Xplore. Restrictions apply.

compute cluster such as a data center where thousands of
decisions are made per second [14], a simple enough algorithm
with a low time complexity remains to be an open challenge.

B. The Relationship Between Min-max and Max-min Allocation

Max-min allocation, on the other hand, can also be trans-
formed into an ILP problem [17]. However, unlike the min-
max allocation, max-min allocation can degenerate to the pro-
gressive filling (PF) algorithm [16], whose complexity is much
lower. Moreover, PF is a greedy algorithm that can be naturally
extended to the case with integer solutions [14], making it is
simple enough to be implemented in practice. Considering these
nice properties possessed by the max-min allocation, in this
section we study the relationship between the max-min and the
min-max allocation to facilitate our design of the algorithm to
achieve min-max allocation among the servers.

Initially, we give formal definitions of the max-min fair
vector and the min-max fair vector, which are derived from
the max-min and min-max allocation problems, respectively.
Consider a set X ⊂ RN , we define the max-min and min-max
fair vectors with respect to X as follows,

Definition 1 (Max-min Fair Vector). An N-dimensional vector
X = {x1, x2, . . . , xN} is max-min fair on set X , when it is
impossible to increase the value of xi without reducing the
value of another element i′ with a value xi′ ≤ xi.

Definition 2 (Min-max Fair Vector). An N-dimensional vector
X = {x1, x2, . . . , xN} is min-max fair on set X , when it is
impossible to decrease the value of xi without increasing the
value of another element i′ with a value xi′ ≥ xi.

We then propose Theorem 1 to describe under what circum-
stance the max-min fair vector is equal to the min-max fair
vector. By the equalization of two vectors X and Y defined on
X , we mean that the corresponding items of the two vectors
are equal, i.e., xi = yi (i = 1, 2, . . . , N).

Theorem 1. Given a set X ⊂ RN such that the sum of
elements in any two N-dimensional vectors defined on X is
the same. That is, if two N-dimensional vectors X,Y ∈ X ,
then

∑N
i=1 xi =

∑N
i=1 yi = Q. If X and Y are the max-min

and min-max fair vectors defined on X , respectively, then we
have X = Y .

Proof: Since X is the max-min fair vector on X , we have
x1 = x2 = · · · = xN .

Likewise, since Y is the min-max fair vector on X , we have
y1 = y2 = · · · = yN .

Both results are not fresh and can be found in [12, 16]. Since
the sum of the components of X and Y are the same, that is,∑N

i=1 xi =
∑N

i=1 yi = Q, we will always have

xi = yi =
Q

N
, i = 1, 2, . . . , N.

Therefore, we have X = Y . That is, the max-min fair vector
and the min-max fair vector are exactly the same vectors as
long as the sum of their elements are the same.

Given the set of all flow demands, it is easy to compute
their total loads, which is

∑
i∈F Qiti. Therefore, according

to Theorem 1, if VNFs are infinitely divisible and have no
placement constraints, then the load balancing problem can
be regarded as a max-min fair allocation problem among the
servers, and the load assigned to each server is the same, which
is

∑
i∈F Qiti

m . However, VNFs are usually indivisible and have
to be scheduled as whole entities in practice. Therefore, in The-
orem 2 we turn our attentions to how the relationship between
max-min fair vector and min-max fair vector is affected in the
discrete scenario.

Theorem 2. Given a set X ⊂ ZN
+ such that the sum of

elements in any two N-dimensional vectors defined on X is
the same. That is, if two N-dimensional vectors X,Y ∈ X ,
then

∑N
i=1 xi =

∑N
i=1 yi. If X and Y are the max-min and

min-max fair vectors defined on X , respectively, then we have
X = Y .

Proof: Since X is the max-min fair vector defined on X
and all elements in X are integers, then the absolute value of the
maximum difference between each pair of the elements in X is
1. That is, |xi−xj | ≤ 1 (i 6= j). Therefore, X can be rewrited
as {x, x, . . . , x, x+ 1, x+ 1, . . . , x+ 1}, and the sum of all the
elements in X is Nx+ a, where a is a constant. Similarly, Y
can be rewrited as {y, y, . . . , y, y+1, y+1, . . . , y+1}, and the
sum of all the elements in Y is Ny+ b, where b is a constant.
Meanwhile, the sum of the elements in X and Y is the same,
that is, Nx + a = Ny + b = Q. Therefore, we have x = y,
a = b. At this point, obviously X = Y .

From Theorem 2, we indicate that when VNFs are indivisible
and have no placement constraints, the load balancing problem
can also be regarded as a max-min fair allocation problem
among the servers. Based on this theorem, we continue to
consider the case when VNFs have placement constraints in
Theorem 3.

Theorem 3. Given a set X ⊂ ZN
+ such that the sum of

elements in any two N-dimensional vectors defined on X is the
same. That is, if two N-dimensional vectors X,Y ∈ X , then∑N

i=1 xi =
∑N

i=1 yi. If 0 ≤ xi ≤ ai and 0 ≤ yi ≤ bi, where
both ai and bi are constants,

∑N
i=1 ai ≥ Q and

∑N
i=1 bi ≥ Q.

If X and Y are the max-min and min-max fair vectors defined
on X , respectively, then we have X = Y .

Proof: For any N-dimensional vector Z ∈ X , we firstly
define the “order mapping” Γ : Z+N → Z+N as the mapping
that sort Z in non-decreasing order, that is, Γ(z1, z2, . . . , zN) =
(z(1), z(2), . . . , z(N)) such that z(1) ≤ z(2) ≤ · · · ≤ z(N) and
for all i, z(i) is one of the zjs. Therefore, the ordering mappings
of X and Y give us x(1) ≤ x(2) ≤ . . . x(N) and y(1) ≤ y(2) ≤
· · · ≤ y(N).

In a proof by contradiction we assume that X 6= Y , then
Γ(X) 6= Γ(Y). Let x(i) = y(i) + δ(i), then we have Γ(X) =

{y(1)+δ(1), y(2)+δ(2), . . . , y(N)+δ(N)}, where
∑N

i=1 δ(i) = 0.
Assume there is only one pair of elements in X that is different
from those two elements in the corresponding positions in Y ,

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on February 22,2023 at 13:33:34 UTC from IEEE Xplore. Restrictions apply.

2f

2f 4f

2f 4f 5f

1f 2f 4f 5f

1f 2f 3f 4f 5f

1sfc()d

2sfc()d

3sfc()d

4sfc()d

5sfc()d

(a) Sample demands of function chains.

1f

2f

3f

4f

5f

1v

2v

3v

(b) Placement con-
straints.

Fig. 2. Sample SFCs and their placement constraints.

then from Γ(X) we have
y(1) ≤ · · · ≤ y(i) + δ(i) ≤ · · · ≤ y(j) + δ(j) ≤ · · · ≤ y(N), (2)

where i < j. Since Y is the min-max fair vector defined on
X , then it is impossible to decrease the value of y(j) without
increasing the value of y(i). Therefore, we have δ(i) > 0, δ(j) <
0. Combine (2) and Γ(Y), we have

y(1) ≤ · · · ≤ y(i) < y(i) + δ(i) ≤
. . . ≤ y(j) + δ(j) < y(j) ≤ . . . y(N).

(3)

This inequation is the same with
x(1) ≤ · · · ≤ y(i) < x(i) ≤ · · · ≤ x(j) < y(j) ≤ . . . x(N). (4)

Since X the max-min fair vector defined on X , it is im-
possible to increase the value of x(j) without decreasing the
value of x(i). However, this is not the case as it is shown in
the inequation (4). The value of x(j) can increase to y(j) by
decreasing the value of x(i) to y(i). Therefore, the assumption
of X 6= Y fails. Consequently, we have X = Y .

C. Constrained Min-max Placement

Now that the constrained load balancing problem can be
regarded as the max-min allocation problem among the servers,
our policy, Constrained Min-max Placement (CMMP), applies
max-min fair allocation with respect to the servers’ loads.
That is, CMMP attempts to recursively maximize the allocation
of the poorest loaded server, followed by the second poorest
loaded server, and so on.

To understand CMMP, consider the example shown in Fig. 2.
Fig. 2a is a sample case of SFC demands, while Fig. 2b shows
the placement constraints of the VNFs in Fig. 2a. Assume
that the execution time of all VNFs are the same in this
example, then the load of a server can be simplified to be the
total number of VNFs allocated to that server. The CMMP
allocation is given by Fig. 3: A(v1) = {f1, f1, f3} (i.e., the
assignment of the VNFs to v1),A(v2) = {f2, f2, f2, f4, f4, f4},
A(v3) = {f2, f4, f2, f5, f5, f5}. To see this is indeed a CMMP
allocation, note that it is impossible to increase the minimal
load across any subset of servers by reshuffling the loads
between the servers in that subset.

IV. OFFLINE AND ONLINE ALLOCATIONS FOR CMMP

A. Computing CMMP Offline

We initially explore how to compute the CMMP allocations
offline. We assume that there are fixed set of demands D with

placements constraints on the servers, and that all the servers
are currently idle. This represents the offline setting [14].

Like other max-min fair solutions, the general approach we
take is PF. In the case of CMMP, PF starts by increasing all
servers’ loads equally until the maximum possible level M1.
Once M1 is achieved, the scheduler continues to increases the
loads equally of the servers that are still available for VNFs to
be deployed on and then achieves a new maximal level M2.
This process repeats until all the VNFs the sfc(dk) (dk ∈ D)
asks for have been placed in order subject to their placement
constraints. Algorithm 1 shows the pseudo-code of the offline
CMMP scheduler.

Algorithm 1: Offline CMMP scheduler
Procedure OfflineSolver()

c := 1 . Current round
M0 := 0, S0 := ∅ . Max level and servers stuck
while true do

(Mc, xi,r) := LP(k,M1, . . . ,Mc−1, S1, . . . , Sc−1)
Sc := Saturated(c,M1, . . . ,Mc−1, S1, . . . , Sc−1)

end
if S1 ∪ · · · ∪ Sc = V then

return xi,r . Return matrix of allocations
end
c := c+ 1

Procedure Saturated(c,M1, . . . ,Mc−1, S1, . . . , Sc−1)
U := {1, . . . ,m} \ (S1 ∪ · · · ∪ Sc−1) . Active servers
S := ∅ . Servers saturated in this round
for u ∈ U do

Sc := U \ {u}
(Mc+1, xir) := LP(c+ 1,M1, . . . ,Mc, S1, . . . , Sc)
if Mc+1 = Mc then

S := S ∪ {u}
end
return S

end

Procedure LP(c,M1, . . . ,Mc−1, S1, . . . , Sc−1)
max Mc,

s.t.
∑

i∈F(r)

xir ≥Ml, (1 ≤ l ≤ c− 1),

∑
i∈F(r)

xir ≤
∑

i∈F(r)

Qi, (1 ≤ r ≤ m),

Ml, xi,r ∈ Z+ .
return (Mc, xir)

Example Fig. 3 shows how the offline CMMP works on
the example shown in Fig. 2 with the solid lines indicating
allocations, whereas dashed lines indicating that the VNF can
be deployed on a particular server. In round 1 each server has
a load constraint of the form

∑5
i=1 xir ≥ M1. The program

attempts to maximize M1. It finds an allocation shown in Fig.
3(a) after round 1, where each server is allocated 3 of the VNFs
(M1 = 3). Now a saturation is done on v1 as there are no
more VNFs available to be placed on it and only v2 and v3
are still active. Thus the program enters round 2, with the load
constraints updated to

∑5
i=1 xi1 ≥ M1,

∑5
i=1 xi2 ≥ M2 and∑5

i=1 xi3 ≥ M2. This time M2 is maximized to 3 and the

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on February 22,2023 at 13:33:34 UTC from IEEE Xplore. Restrictions apply.

1f 1f 2f 2f 2f 2f 2f 3f 4f 4f 4f4f 5f 5f 5f

1v 2v 3v

1f 1f 2f 2f 2f 2f 2f 3f 4f 4f 4f4f 5f 5f 5f

1v 2v 3v

)a

)b

Fig. 3. (a) Allocation after round 1 of the offline CMMP algorithm, in which
all servers are given 3 NFs. (b) Allocation after round 2, in which v2 and v3
are still active and each gets another 3 NFs.

program finds the allocation given by Fig. 3(b). Both v2 and
v3 get another 3 VNFs and no more VNFs are left.

Complexity Since the number of servers is m, then the
maximal possible round number is m. In each round, the offline
CMMP solves a LP problem, leading its time complexity to
be O(LP (n,m)). Therefore the total complexity of the offline
CMMP scheduler is O(mLP (n,m)). In most practical cases
there are solutions with polynomial complexities for such a LP
scheduler [12].

B. Online Scheduling for CMMP

In practice, traffic flows arrive and depart dynamically and
it is hard to predict the profile of the upcoming demands
precisely. Therefore, an online CMMP scheduler is desirable to
schedule the demands dynamically. In addition, in large-scale
data-intensive frameworks such like data centers, thousands of
scheduling decisions are made per second [14]. Thus, the online
scheduler should also be simple enough to be scheduled at
high speeds. Fortunately, the PF algorithm that achieves max-
min fairness is a greedy algorithm and is simple enough to be
implemented in practice. Our online CMMP scheduler, which
is a natural extension of PF, can be described as follows,

Assign the next VNF to the server with lowest current load
whose placement constraints satisfies.

Complexity The complexity of online CMMP is the same
with the PF algorithm, which is O(logm), as the online CMMP
scheduler only need to sort the loads of the m servers and
determine which one is the poorest loaded.

V. TRACE-DRIVEN SIMULATIONS

In practical data centers where flows arrive dynamically and
VNFs are deployed as whole entities, only the online CMMP
scheduler is desirable for the VNF deployment. Therefore,
we evaluate the online CMMP by comparing it to the ideal
solutions (i.e., the offline CMMP scheduler and the optimal
scheduler) and the latest network flow solutions (i.e., MEC3

and CANCELL). The offline CMMP scheduler and the optimal
scheduler shown in (1) are computed using IBM ILOG CPLEX.

Specifically, we would like to (i) confirm experimentally
that the online CMMP runs at high speeds through runtime
comparison. (ii) measure the average makespan to verify the
similarities of the algorithms in providing minimal makespan.

20 40 60 80 100 120 140

Number of Flow Demands

0

1

2

3

4

5

6

7

8

T
o

ta
l

ru
n

 t
im

e
(m

s)

Online CMMP

Offline CMMP

Optimal

(a) Internet2

100 150 200 250 300 350 400

Number of Flow Demands

0

5

10

15

20

25

T
o

ta
l

ru
n

 t
im

e
(m

s)

Online CMMP

Offline CMMP

Optimal

(b) germany50

Fig. 4. Runtime comparison.

TABLE I
RUNNING TIME OF THE SCHEDULERS WITH 1000 NODES AND 10000

DEMANDS.

Scheduler Total Runtime (s)
Online CMMP 1.5
Offline CMMP 234.7
CANCELALL 607.1

MEC3 589.6

(iii) investigate the VNF queueing delay to see if the low
complexity of the online CMMP scheduler is achieved at the
expense of its VNFs’ queueing delays.

General Setup. We conduct simulations on two real-world
datasets that contain the network topology and traffic traces
measured at different times, and on random Erdös-Rényi
graphs [18]. The first dataset is the Internet2 [19] including
a topology of 12 nodes, 30 links and traffic traces with 144
demands. The second dataset is the germany50 [20] including
50 nodes, 88 links and traffic traces with 400 demands. The
SFC of a demand is composed of 1 to 6 NFs uniformly chosen
at random from a set of 30 functions. On the other hand, we
assign placement constraints to NFs according to the model
proposed at Google [10], where a task can be treated as a VNF
in our case. In our experiments, we follow the same constraints’
setting with [14] so as to constitute a nontrivial workload with a
large fraction of highly constraint VNFs, that the average VNF
could use 38% of the server nodes; 40% of the VNFs could
use less than 20% of the nodes; and 30% of them could use
less than 10% of the nodes.

Total Run Time. Fig. 4 shows the runtime comparison using
the two real-world datasets with respect to the number of flow
demands. We observe that the online CMMP scheduler runs
much faster than the other schedulers by showing a runtime
one order of magnitude less than the others. Further, we use
the random Erdös-Rényi graph to generate a large-scale cluster
including 1000 nodes and 10000 flow demands. Table I lists the
total runtime comparison between different schedulers. All the
other schedulers are more than two orders of magnitude slower
than the online CMMP scheduler, meaning that they would be
too slow to be deployed in a real large-scale data center.

Average Makespan. Fig. 5 shows the average makespan ex-
perienced by the schedulers. Apparently, the average makespan
of the optimal scheduler is the lower bound of the other
schedulers since it is the ideal solution to the load balancing
problem where VNFs are infinitely divisible and the demands

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on February 22,2023 at 13:33:34 UTC from IEEE Xplore. Restrictions apply.

20 40 60 80 100 120 140

Number of Flow Demands

100

200

300

400

500

600

A
v

er
ag

e
M

ak
es

p
an

 (
se

c)

Online CMMP

Offline CMMP

Optimal

(a) Internet2

100 150 200 250 300 350 400

Number of Flow Demands

400

500

600

700

800

900

1000

1100

1200

A
v

er
ag

e
M

ak
es

ap
n

 (
se

c)

Online CMMP

Offline CMMP

Optimal

(b) germany50

Fig. 5. Average makespan comparison.

profile are given in advance. Meanwhile, the offline CMMP
scheduler behaves better than the online CMMP as it is also
an ideal solution assuming the demands profile is known ahead
of time. As the number of flow demands increases, the gap
between the optimal scheduler and the offline CMMP is also
increasing. This is reasonable since the more flow demands, the
more VNFs that may not obtain integer solutions in the optimal
scheduler, thus leading a larger offset from the offline scheduler
with integer solutions. On the other hand, we observe that the
online CMMP scheduler approximates to the offline CMMP
scheduler well. This approximation verifies that the online
CMMP scheduler can efficiently balance the loads among
servers, as the theorem indicates.

Average Queueing Time. Fig. 6 shows the average flow
completion time of the schedulers. We compare the CMMP
with the FIFO algorithm this time because there exits no
queueing delay using the optimal scheduler. We observe that the
average queueing time of FIFO is smaller than the other two.
This indicates that the VNFs in CMMP usually have to wait
longer than in FIFO to balance the loads among the servers.
Further, the average VNF queueing time in the offline CMMP
is larger than the online CMMP scheduler by up to 12%. This
is reasonable as the online CMMP scheduler deploy VNFs in
a greedy manner such that the VNF that arrives first would
always assign to poorest loaded server and gets its service first
on that server. Combine Fig. 4 and Fig. 6, we indicate that the
significant improvement in the running speeds of the online
CMMP scheduler is achieved at the expense of some latency.

VI. ACKNOWLEDGEMENTS

This work is partially supported by NSFC Fund
(1671130, 61301153, 612711656, 61671124), 973 Program
(2013CB329103), Program for Changjiang Scholars and
Innovative Research Team (PCSIRT) in University and the
111 Project B14039.

VII. CONCLUSIONS

In this paper, we studied the VNF deployment problem in
data centers with placement constraints. We proposed a new
load balancing policy, CMMP, that deployed the VNFs in a
way similar to the max-min allocation. In particular, CMMP
greedily deployed the next VNF to the current poorest server
with the lowest load whose placement constraints satisfied. The
online scheduler of CMMP had a logarithmic time complexity
O(logm), as opposed to the exponential complexities suffered

1 2 3 4 5 6

Length of the Flow Demand

0

5

10

15

20

25

30

35

40

A
v

er
ag

e
F

lo
w

 Q
u

eu
ei

n
g

 T
im

e
(m

s)

Offline CMMP

Online CMMP

FIFO

(a) Internet2

1 2 3 4 5 6

Length of the Flow Demand

0

10

20

30

40

50

A
v

er
ag

e
F

lo
w

 Q
u

eu
ei

n
g

 T
im

e
(m

s)

Offline CMMP

Online CMMP

FIFO

(b) germany50

Fig. 6. Average flow completion time comparison.

by the network flow algorithms that can also solve the online
constrained load balancing problem. Trace-driven simulations
showed CMMP could speed up the deployment by at least two
orders of magnitude of running time compared to the network
flow algorithms.

REFERENCES
[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and

V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM CCR, vol. 42, no. 4, pp.
13–24, 2012.

[2] P. Quinn and T. Nadeau, “Problem statement for service function chain-
ing,” IETF SFC Tech. Rep., 2015.

[3] F. Carpio, S. Dhahri, and A. Jukan, “VNF placement with replication for
load balancing in NFV networks,” in IEEE ICC, 2017.

[4] T.-M. Pham, S. Fdida, H. T. T. Binh et al., “Online load balancing for
network functions virtualization,” in IEEE ICC, 2017.

[5] T. Wang, H. Xu, and F. Liu, “Multi-resource load balancing for virtual
network functions,” in IEEE ICDCS, 2017.

[6] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP?” in ACM SIGCOMM,
2011.

[7] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE Transactions
on Network and Service Management, vol. 13, no. 4, pp. 725–739, 2016.

[8] A. Tomassilli, F. Giroire, N. Huin, and S. Pérennes, “Provably efficient
algorithms for placement of service function chains with ordering con-
straints,” in IEEE INFOCOM, 2018.

[9] “CUDA,” https://developer.nvidia.com/cuda-zone.
[10] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R. Das,

“Modeling and synthesizing task placement constraints in google compute
clusters,” in ACM SoCC, 2011.

[11] N. J. Harvey, R. E. Ladner, L. Lovász, and T. Tamir, “Semi-matchings
for bipartite graphs and load balancing,” Journal of Algorithms, vol. 59,
no. 1, pp. 53–78, 2006.

[12] B. Radunovic and J.-Y. Le Boudec, “A unified framework for max-min
and min-max fairness with applications,” IEEE/ACM Transactions on
networking, vol. 15, no. 5, pp. 1073–1083, 2007.

[13] J. P. Champati and B. Liang, “Efficient minimization of sum and
differential costs on machines with job placement constraints,” in IEEE
INFOCOM, 2017.

[14] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Choosy: Max-min fair
sharing for datacenter jobs with constraints,” in ACM EuroSys, 2013.

[15] J. Fakcharoenphol, B. Laekhanukit, and D. Nanongkai, “Faster algorithms
for semi-matching problems,” ACM Transactions on Algorithms (TALG),
vol. 10, no. 3, p. 14, 2014.

[16] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks. Prentice-
Hall International New Jersey, 1992, vol. 2.

[17] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge univer-
sity press, 2004.

[18] B. Bollobás, “Random graphs,” in Modern graph theory. Springer, 1998,
pp. 215–252.

[19] “Internet2 research network topology and traffic matrix,” http://www.cs.
utexas.edu/yzhang/research/AbileneTM/.

[20] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “Sndlib 1.0sur-
vivable network design library,” Networks: An International Journal,
vol. 55, no. 3, pp. 276–286, 2010.

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on February 22,2023 at 13:33:34 UTC from IEEE Xplore. Restrictions apply.

